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Plusieurs types de Big Data
• Grandes bases de données 

• Google     (NSA) 
• données  : textuelles, irrégulières, nombreuses erreurs 
• analyse :  
‣ rechercher  compter   trier 
‣ recherche de corrélation, d’out-liers 
‣ Machine Learning 

• stratégies 
‣ systèmes distribués - map-reduce 
‣ cloud - hadoop 

• Grandes mesures physiques 
‣ LHC : 40.000 Go / jour = 40 To / jour 
‣ Petasky : 3 Milliard de pixels / 17 secondes 

• données  : numériques, régulières, peu d’erreur 
• besoins :  recherche de motif / mesure 
• stratégies 
‣ adapter la puissance aux besoins 
‣ compresser  /  calcul en flux  /  calcul centralisé



• Prospectom- novembre 2014 •

• Grandes bases de données  (Google) 
• PDB ~100.000 structures 
• Uniprot ~1M protéines 
• Genome ~1000 organismes 
!

!
!

• Grandes mesures physiques (LHC) 
• BioMagResBank 
‣ données de RMN 

• PRIDE/EBI 
‣ Proteomics : 38.000 assays 

• COSMIC séquençage de tumeurs 
‣ ~1M échantillons   ~2M mutations

Plusieurs types de Big Data
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Rencontre d’un troisième type
• Nombreuses mesures délocalisées 

• Examples: 
‣ les caméras de surveillance  
‣ Les albums photo dans les familles françaises 

• Caractéristiques: 
• stockage distribué 

• il n’y a pas de “base de données” 
• Analyse au vol, impossibilité de garder à long terme toutes les données 
‣ Il faut traiter tout, tout de suite 

• Traitement des données en local 
• difficulté de traitement optimal des données 
• Nécessité de traitements automatiques 
‣ robustes 
‣ autonomes 

• Nécessité de développements méthodologiques 
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Rencontre d’un troisième type
• En Biologie aussi 

• démocratisation des analyses biophysiques systématiques 
‣ Protéomiques  / Métabolomique 
‣ MS,  RMN,   
‣ flux d’échantillons et de données 

• médecine personnalisée 

• Caractéristiques: 
• Analyse au vol, impossibilité de garder à long terme toutes les données 
• Difficulté de traitement optimal des données 
• Nécessité de traitements automatiques 
‣ robustes 
‣ “unattended”
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Les big data  - Solutions de traitement
• Analyse 

• données  :  numériques, régulières, très peu d’erreur 
• besoins :  recherche de motif / mesure 
• stratégies : compresser / calcul en flux / calcul décentralisé 

• Utilisation du cloud 
• limité par les taux de transferts 
• confidentialité ? 

• Développement de nouveaux algorithmes 
• permettre des analyses sans compromis sur la qualité de l’analyse et du 

traitement de données 
• adapter les protocoles de mesure et de traitement pour optimiser la chaine 

de mesure 
• permettre le déploiement de cette approche chez les utilisateurs pour un 

traitement en temps réel 
• application à plusieurs secteurs industriels
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From: Clinica Chimica Acta journals@mail.elsevier.com
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d’analyses médicales
Date: 19 Nov 2014 16:54

To: madelsuc@unistra.fr

 

En association avec

Presenter Présentateur: Prof. Pierre Marquet
CHU de Limoges

 

Webinar

Webinar à venir: Spectrométrie de masse en laboratoire
d’analyses médicales: applications et tendances

Date: lundi 15 décembre 2014
Heure: 15h00 (Paris/Bruxelles/Genève)

Joignez-vous à notre webinar gratuit. Inscrivez-vous dès maintenant

Cher Marc-Andr? Delsuc,

Rejoignez nous pour un webinar gratuit sur les applications
et tendances de la spectrométrie de masse en laboratoire
d’analyses médicales.

Les laboratoires médicaux ont de plus en plus souvent à
répondre à des demandes d’analyses spécifiques et de
haute sensibilité, dans des délais courts. Dans le domaine du
suivi thérapeutique pharmacologique par exemple, de
nouvelles techniques d'analyse doivent être mises au point et validées chaque
année pour de nouveaux médicaments, souvent pour ne devoir analyser qu'un
nombre réduit de prélèvements. En toxicologie médicale ou médico-légale,
l'amélioration des techniques de screening contribue à l'obtention de résultats plus
pertinents et significatifs. Dans le domaine des biomarqueurs en protéomique et
métabolomique, la standardisation des techniques devrait contribuer à la
dissémination des innovations diagnostiques. Ce webinar couvrira ces différents
aspects.

Soutenu par une subvention éducative sans restriction de Thermo Fisher Scientific.

Inscrivez-vous dès maintenant

Présentateur
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• traitements classiques lourds et peu compatibles avec le volume de 
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Alexander 
Makarov2 generations of orbitrap 
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FT-ICR 
• A Magnet 
!

!
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• Fourier transform
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FT-MS
• ICR 

• ions fly circularly in a homogeneous 
magnetic field 

• cyclotron movement 

!

• Orbitrap 
• ions fly circularly in a (carefully designed) 

inhomogeneous electric field 
• electrostatic trap

Alexander Makarov 
Anal. Chem. 2000, 
72, 1156-1162

current detection. However, it had been planned to derive the
mass-to-charge ratio from the frequency of ion rotation. Due to
the strong dependence of the rotation frequency on ion velocity
and initial radius, this approach leads to poor mass resolution.
In this work, the concept of orbital trapping is freshly revised

for application to mass analysis. A new type of mass analyzer is
described which employs orbital trapping in an electrostatic field
with potential distribution:12,16,18

where r and z are cylindrical coordinates (z ) 0 being the plane
of the symmetry of the field), C is a constant, k is field curvature,
and Rm is the characteristic radius. This field is the sum of a
quadrupole field of the ion trap and a logarithmic field of a
cylindrical capacitor; therefore, it may be also called a quadro-
logarithmic field.
The main distinction of the this trap is that mass-to-charge ratio

is derived from the frequency of harmonic ion oscillations along
the axis of the field (1).19 This axial frequency may be determined
using image current detection and fast FT algorithms.2 Use of
the axial frequency as opposed to rotational or radial frequency
is essential because only this frequency is completely independent
of energy and spatial spread of ions (see below). Amass analyzer
employing such electrostatic axially harmonic orbital trapping is
referred hereinafter as the orbitrap.
The potential advantages of the orbitrap include the following:

(1) high mass resolution (up to 100 000-200 000) since the field
(1) may be defined with very high accuracy; (2) increased space
charge capacity at higher masses due to independence of trapping
potential on mass-to-charge ratio and larger trapping volumesin
contrast to FT ICR and Paul’s trap; (3) high mass accuracy,
dynamic range, and upper mass limit due to the factors listed
above.

THEORETICAL SECTION
Geometry of the Orbitrap. The trap consists of an outer

barrel-like electrode and a central spindle-like electrode along the
axis (Figure 1). The shape of these axially symmetrical electrodes

could be deduced from eq 1:

where index 1 denotes the central electrode, index 2 denotes the
outer electrode, z ) 0 is the plane of symmetry, and R1,2 are the
maximum radii of the corresponding electrodes.
Ion Trajectories . In the field (1), stable trajectories combine

rotation around the central electrode with oscillations along the
axis, resulting in an intricate spiral. Equation of motion in polar
coordinates ( r, !, z) for ions with mass-to-charge ratio m / q are

with initial conditions at the moment t ) 0

Equation 3a reveals the physical meaning of the characteristic
radius Rm. If r < Rm, the electric field attracts ions to the axis and
repels otherwise. For trapping, only radii below Rm are useful.
According to (3), motion in the polar plane ( r, !) is completely

independent of the motion along z. Also, !̆ could be excluded
from (3a) using (3b). Therefore, it is convenient to introduce
separate energy characteristics Er, E!, Ez for each direction:

and the ion initial kinetic energy is the sum of all three.
The equation of motion along z (3c) describes a simple

harmonic oscillator and its exact solution is

where

is the frequency of axial oscillations (in rad/ s).
For the polar plane ( r, !) , eqs 3a and 3b cannot be integrated

analytically. In the general case, they define a trajectory looking
like a rotating ellipse. To reduce the influence of field imperfec-

(18) Gall, L. N.; Golikov, Y. K.; Aleksandrov, M. L.; Pechalina, Y. E.; Holin, N. A.
USSR Inventor’s Certificate 1247973, 1986.

(19) Makarov A. A. U.S. Patent 5,886,346, 1999.

Figure 1. Equipotentials of the quadro-logarithmic field and an
example of a stable ion trajectory
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to optimize the entrance angle of the ion beam. Ions enter the
trap through a narrow ion injection channel tangentially to the
outer electrode (Figure 5). An additional electrode with adjustable
voltage is used as a field compensator to minimize three-
dimensional field distortion introduced by the ion injection
channel.
To increase the mass range of trapped ions, the principle of

electrodynamic squeezing has been developed.19 According to this
principle, ions enter the field tangentially to the outer electrode
and are prevented from hitting this electrode again by a monotoni-
cally increasing electric field, which squeezes them closer to the
center of the trap, like stars to a black hole. The time constant of
the electric field increase depends on the mass range to be trapped
and usually stays within 20-100 µs. Squeezing stops as soon as
there is no more threat of losing ions on the electrodes. As the
detection electrodes are kept at virtual ground, only the voltage
on the central electrode is monotonically changed down to -5
kV by a home-built high-voltage amplifier synchronized with the
laser pulse. The final kinetic energy of trapped ions after
electrodynamic squeezing is estimated to be around 2.2 kV.
So far, all experiments have been confined to the FT MS-only

mode. In the present “proof-of-principle” setup, all-mass excitation
for image current detection has been performed simply by off-
equator tangential injection of ions (“excitation by injection”).
Coherence of ion motion is achieved due to the small dimenisions
of the ion packets on entrance to the trap.
Detection starts after the voltage on the central electrode

reaches a steady state, usually after 20-90 ms. Image current from
the detection electrodes is amplified by a differential preamplifier,22
courtesy of Pacific Northwest National Laboratory, and is Fourier
transformed using a home-built board with 1.25 MHz 9 bit ADC
and 1 Mbyte record length. If this record length is not sufficient,
digital oscilloscope LC584AL (LeCroy Inc., Chestnut Ridge, NY)
with an 8 MB record length is used. No conditioning of the data
(e.g., zero filling) has been used. To improve the signal-to-noise
ratio in MALDI experiments, individual spectra in the frequency
domain were added together.
The trap, ion source, and sample introduction unit are located

inside a small main vacuum chamber (290 mm long, 140 mm high,
160 mm wide) sustained at a pressure of 2 × 10-7 mbar by a 70
L/ s turbo pump backed by a 1.5 m3/ h rotary pump (Edwards Ltd.,
Crawley, U.K.). The interior volume of the trap is pumped down
to 10-9-10-10 mbar (measured on the pump) by a 40 L/ s ion pump
(Physical Electronics, Eden Prairie, MN). The entire setup forms
a compact benchtop unit (600 mm wide, 600 mm high, 500 mm
deep).
Samples for experiments with atomic ions have been prepared

by depositing 1 µL of a saturated NaCl or CsI salt solution on the
tip of the stainless steel probe. Tin/ lead alloy has been atttached
to the probe by soldering with acid flux. Samples for MALDI
analysis were prepared using a direct deposition method by
placing 1 µL of a 10 µM poly(ethylene) glycol (PEG-1000) polymer
standard or angiotensin-2 solution on the probe followed by 1 µL
of a saturated solution of 2,5-dihydroxybenzoic acid (DHB).

RESULTS AND DISCUSSION
A typical recorded transient of atomic ions is represented in

Figure 6. It corresponds to approximately 2 × 105 ions injected
into the trap. Figure 6 shows that the signal remains detectable

for more than 0.5 s (detection stops after 0.8 s). The decay of the
transient speeds up if pressures exceed (2-5) × 10-8 mbar as
measured on the ion pump. Also, signal decay is dramatically
accelerated if voltages on the compensation electrodes or the
shape of the electrodes perturbs the field (1).
When the transient of Figure 6 is transformed, it yields the

frequency spectrum shown in Figure 7. No significant side bands
or higher harmonics have been observed. Peak shape stays the
same even if the ion energy is changed by more than (5%, which
is approximately 100 eV. Peak width is 2.39 Hz at a frequency
711 kHz, which corresponds to a full-width half-maximum (fwhm)
frequency resolution of about 300 000 and a mass resolution of
150 000. These experiments with atomic ions are important for
finding at what level mass resolution is limited primarily by the
construction itself rather than by pressure or metastable decay.
Mass analysis of a broad range of masses and concentrations is
also possible as shown in Figure 8 for a tin/ lead 60:40 mixture.
Though the response is dependent on the element (as it is usual
for laser ablation), isotopic ratios measured in individual shots
appear to be within (5-10%of the correct ratio. Only the smallest
isotopes (below a few percent) were found to be discriminated
against, presumably due to the low dynamic range of the
electronics.
Results of experiments on mass accuracy and the calibration

curve of the orbitrap are represented in Figure 9. Data were
acquired over more than 20 h using laser ablation of a mixed salt
sample. The spread of signal intensities within this series of
measurements has been more than a factor of 10. The frequency
of 133Cs+ has been used to find k in (7), and then the mass of

Figure 6. Typical transient for 56Fe+. Hundreds of thousands of
oscillations merge into the black envelope.

Figure 7. Mass peak of 56Fe+ in the frequency domain (peak
centroid is at 711 kHz).
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23Na+ has been calculated from (7) according to the measured
frequency. The calculated mass is only 11 ppm from the theoretical
mass, although it is almost 6 times different. The root-mean-square
deviation for individual shots is 5 ppm.
MALDI experiments resulted in the frequency-domain spectra

of Figures 10 and 11. Isotopic resolution and reasonable isotopic
ratios have been achieved for a PEG-1000 standard (Figure 10)
as well as for angiotensin-2 (Figure 11). It should be noted that
these figures represent mass spectra in the frequency domain so
higher mass isotopes appear to the left. Unfortunately, much faster
signal decay has been observed for these polyatomic ions, with
the time constant of ∼20-30 ms for PEG-1000 and ∼10-20 ms
for angiotensin-2. Due to the independence of pressure, the effect
has been attributed to metastable fragmentation that is consistent
with the experience ofMALDI FT ICR25 (when no cooling is used).
Figure 10 demonstrates a broad distribution of PEG oligomers

without any mass discrimination relative to typical MALDI spectra

of the PEG-1000 polymer standard. It means that the range of
masses simultaneously injected and trapped in the orbitrap is quite
wide. Indeed, this spectrum was acquired at the same settings as
the spectra for atomic ions. It means that the use of electrody-
namic squeezing allows trapping of a wide mass range with Mmax/
Mmin > 50. To increase the upper mass limit Mmax, it will be
necessary simply to increase the rise time of the high-voltage
amplifier (Figure 5). Figure 10 also shows several noise peaks
(marked by arrows) which are effectively higher harmonics of
switching frequencies of dc-dc converters inside the high-voltage
amplifier and power supplies.(25) Castoro, J. A.; Wilkins, C. L. Anal. Chem. 1 9 9 3 , 65, 2621-2627.

Figure 8. Panoramic mass spectrum of laser-ablated solder alloy
(40%:60% lead/tin) in the frequency domain. Accurate masses of most
abundant isotopes are shown along with their natural abundance.

Figure 9. Measured mass of 23Na+ for individual laser shots over
20 h. 133Cs+ has been used as the only internal calibrant.

Figure 10. Wide mass range spectrum of PEG-1000 in the
frequency domain (sum of 30 laser shots). Noise peaks of electronics
are marked by arrows while all other peaks represent oligomers of
PEG-1000. The most intense mass peak of the distribution (at mass
966.55 Da) is shown in detail in the inset.

Figure 11. Mass spectrum of angiotensin-2 in the frequency domain
(sum of 30 laser shots).
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Fourier Transform

R = 200 000 (Orbi)	

R = 2 000 000 (FTICR)
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Improving the detection
• Sensitivity of the measure is governed by Signal/Noise ratio 

⇒ increase signal 
⇒ reduce noise 

• Noise sources 
• “standard” 
‣ coming from the electronic on the apparatus 
⇒	  acquire more scan = takes time 

• scintillation/jitter noise 
‣ comes from the sample or the measure process 
⇒	  no counter action during acquisition 
‣ preponderant in 2D   (t1-noise in NMR) 

• Impact 
• better detection of weaker compounds 
• better coverage in bottom-up proteomics 
• better detection of PTM 
• faster acquisition

S/N =
p
Nscan

S/N ⇠ invariant
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M x N!
L = M + N + 1!
M < N

Hankel matrix

Statistical treatment  

Hankel matrix:   Same terms on antidiagonals

Signal time-series : 

Uniform sampling 

P frequencies
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Cadzow procedure
• The idea is to decompose H 

‣ using Singular Value Decompostion  SVD 
!
!
‣ singular values 
!
!
!

• we keep only the k largest singular values 
‣ and reconstruct a denoised signal from the rank-reduced H matrix 
!

‣ projection of H on a subspace

�1 > �2 > �3 > ...

⌃ =

2

6666664

�1 0 ... 0
0 �2 ... 0
0 0 ... 0
0 0 ... �N

. . .
0 0 ... 0

3

7777775

Cadzow, J.A. (1988) IEEE Trans. Acous. Speech Signal Proc., 36, 49-62.

x̃p = hH̃ijii+j�1=p

‣ then averaging on H antidiagonals

H̃ = U⌃kV
⇤

H = U⌃V ⇤
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Fig. 1. The Cadzow procedure, tested on a simulated spectrum com- 
posed of nine lines. The line parameters are given in part A of Table 
1. (a) The Fourier transformed noise-free simulated signal. The spec- 
trum is simulated with a spectral width of 1000 Hz. (b) The Fourier 
transform of the same signal as in (a) after introduction of t~ noise, 
simulated as described in the text. The noise leveI e~ is 0.25. (c) The 
result of the first Cadzow iteration on the data. (d) The result of five 
Cadzow iterations on the data. 

where ~ is a positive constant, n i is a random variable 
with a Gaussian distribution and zero mean, and lal de- 
notes the absolute value of  a. This model can probably be 
contested; however, we think that it is probably a more 
stringent test than the centred multiplicative test. On the 
other hand, it is probably hopeless to try to simulate real 
t 1 noise in a dependable manner. 

This t~ noise simulation procedure effectively reduced 
the total amount  o f  signal present in the FID. Thus, to 
permit comparisons with the initial values, the F I D  was 
rescaled in order to keep the sum of  the square of  the 
data points constant. Figure 1 presents the result of  the 
Cadzow procedure for ~ = 0.25 and N (number o f  lines to 
find) equal to 9. 

In order to evaluate the efficiency of  the Cadzow pro- 
cedure, the resulting spectra have been fitted to a sum of  
Lorentzian lines using a Levenberg-Marquar t  least- 
squares algorithm (Press et al., 1986). 

To explore the characteristics of  the method, we per- 
formed a Monte Carlo study on this simulated signal by 
using 100 realizations of  the simulated noise with (z = 0.15. 
Each realization was then processed with two iterations 
o f  the Cadzow procedure, as described above. Finally, the 
resulting F I D  was Fourier transformed and the spectrum 
was fitted as a sum of  nine Lorentzian lines. The mean 
and the standard deviation o f  the parameters thus ob- 
tained were then compared to the real values used for the 
simulation. The results are shown in Table 1. 

The procedure was tested on 2D spectra by sequential- 
ly applying it to each tl FID,  after Fourier transform- 
ation o f  the data set in the t 2 dimension. An  estimation of  
the number of  lines contained in each t~ F I D  was ob- 
tained in the following way. The t I F I D  was temporarily 
Fourier transformed and phased in order to obtain a 
spectrum. The standard deviation of  the noise was evalu- 
ated in a line-free region. A standard peak-picker was 
then used to detect all local maxima higher than 13 times 
the noise level. The number of  peaks thus detected was 
used as input for the Cadzow procedure. Thus, the only 
user-defined parameter was 13, the threshold for the peak- 
picker. When no peak was found by the peak-picker, no 
further processing was performed and the column was left 
unmodified in the 2D matrix. 

The procedure was applied on a ~3C H M Q C  spectrum 
of  a 10 m M  sample of  parvalbumin at natural abundance. 
The 13 factor value was chosen to be 4; this value was 
determined by trial and error. 

The complete processing of  the 2D data set as described 
above took 1 h and 51 min on an HP735/99 U N I X  work- 
station. 

Results and Discussion 

The results o f  the Cadzow procedure obtained on a 
simulated noisy data set are shown in Fig. 1. It appears 
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Fig. 2. Example of the use of the Cadzow procedure on a 2D natural abundance ~3C HMQC spectrum of pike parvalbumin. The spectrum is the 
result of 512 experiments, with 2048 points in the F2 direction; 16 scans for each experiment were collected, which resulted in a total measuring 
time of 5 h and 14 rain on a Bruker AMX 400. (a) The aliphatic region, as obtained with regular processing. The experiment was recorded with 
the States-Haberkorn scheme. (b) The same region after application of the Cadzow procedure. (c) The same region, obtained with a PFG-HMQC 
experiment. The experiment was recorded with phase modulation. 

from this simulation that the procedure performs success- 
fully with simulated multiplicative noise. It can be seen in 
the figure that, even after the first iteration, the noise is 
already considerably reduced, and that subsequent iter- 
ations still further reduce it. 

The Monte Carlo procedure was used to evaluate the 
degree of imprecision, and eventually of bias, introduced 
by the method (Table 1). The Cadzow procedure showed 
to be unbiased, as can be seen from the mean value for 
each line parameter extracted after the processing (Table 
1, part C). The spread in the fitted parameters obtained 
after the Cadzow procedure tends to be much smaller 
than that obtained if no Cadzow procedure is applied 
(Table 1, parts B and C). This is an indication that some 
noise is indeed removed by the operation. 

The simulation study shows that the Cadzow proce- 
dure improves the quality of NMR signals corrupted by 

tl noise. This result is similar to earlier observations made 
on processing regular additive noise (Brown and Camp- 
bell, 1990; Diop et al., 1994). The total absence of spuri- 
ous signals during processing, and the very high accuracy 
in the frequencies of the smoothed lines should also be 
pointed out. 

In the case of 2D spectra, a procedure based on a 
simple peak detection was applied to estimate the number 
of lines in the spectrum. The peak detection approach can 
be used in this case because, in a typical 2D NMR high- 
resolution data set, only a small number of lines is ex- 
pected in each t~ FID after the first Fourier transform- 
ation in F2. 

Figure 2 shows the effect of the 2D Cadzow procedure 
on a natural abundance 13C HSQC spectrum of parvalbu- 
min. This kind of spectrum gives rise to large t~ noise 
effects, because of imperfect cancellation of the remaining 
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result of 512 experiments, with 2048 points in the F2 direction; 16 scans for each experiment were collected, which resulted in a total measuring 
time of 5 h and 14 rain on a Bruker AMX 400. (a) The aliphatic region, as obtained with regular processing. The experiment was recorded with 
the States-Haberkorn scheme. (b) The same region after application of the Cadzow procedure. (c) The same region, obtained with a PFG-HMQC 
experiment. The experiment was recorded with phase modulation. 

from this simulation that the procedure performs success- 
fully with simulated multiplicative noise. It can be seen in 
the figure that, even after the first iteration, the noise is 
already considerably reduced, and that subsequent iter- 
ations still further reduce it. 

The Monte Carlo procedure was used to evaluate the 
degree of imprecision, and eventually of bias, introduced 
by the method (Table 1). The Cadzow procedure showed 
to be unbiased, as can be seen from the mean value for 
each line parameter extracted after the processing (Table 
1, part C). The spread in the fitted parameters obtained 
after the Cadzow procedure tends to be much smaller 
than that obtained if no Cadzow procedure is applied 
(Table 1, parts B and C). This is an indication that some 
noise is indeed removed by the operation. 

The simulation study shows that the Cadzow proce- 
dure improves the quality of NMR signals corrupted by 

tl noise. This result is similar to earlier observations made 
on processing regular additive noise (Brown and Camp- 
bell, 1990; Diop et al., 1994). The total absence of spuri- 
ous signals during processing, and the very high accuracy 
in the frequencies of the smoothed lines should also be 
pointed out. 

In the case of 2D spectra, a procedure based on a 
simple peak detection was applied to estimate the number 
of lines in the spectrum. The peak detection approach can 
be used in this case because, in a typical 2D NMR high- 
resolution data set, only a small number of lines is ex- 
pected in each t~ FID after the first Fourier transform- 
ation in F2. 

Figure 2 shows the effect of the 2D Cadzow procedure 
on a natural abundance 13C HSQC spectrum of parvalbu- 
min. This kind of spectrum gives rise to large t~ noise 
effects, because of imperfect cancellation of the remaining 

Brissac, C., Malliavin, T. E. & Delsuc, M.-A. 	

J Biomol NMR 6, 361–363 (1995).
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Simulated 13C HMQC of pike parvalbumin
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Approximate by random sampling
combine several new mathematical ideas 

• use new developments linking between algebra and statistics 
‣ Johnson Linderstrauss Lemma (1984) 
‣ Compress Sensing approaches (Candès 2006, Donoho-Tanner 2007)  
!

• Apply matrix approximation rather than complete matrices 
‣ Tygert, Martinsson ( 2007 ) 
!

•⇒ Estimate values rather than determining them 
• SVD can then be replaced by QR decomposition (faster) 
• precision and efficiency grows as the square root of the size 

hence efficient for Big Data 
!

• uncoiled random QR denoising  :  urQRd 
• noise reduction from random sampling !

Chiron, L., van Agthoven, M. A., Kieffer, B., Rolando, C. & Delsuc, M.-A. !
Proc Natl Acad Sci USA 111, 1385–1390 (2014).
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New algorithm
• Build H  :  MxN 
• Build a random matrix 

• K is ~ number of signals 
• K <<  M < N 

• Sample H with it 
• Y smaller than H 

• Find main axes of Y 
• QR decomposition MUCH faster than SVD 

• make a rank reduction of H using Q 
• Reconstruction, as with Cadzow 
!

• reminiscent with SVD truncature 
• much faster

Hij = xi+j�1

Y = H⌦

Y = QR

H̃ = QQ⇤H

x̃p = hH̃ijii+j�1=p

⌦ : N (0, 1)N ⇥K
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expressing antidiagonal averaging 
as Fast Hankel matrix products

nal is polluted with spurious artifacts that are indistinguishable from
the real signal. Additionally, the SVD decomposition is slow and
scales in O(mn2

) operations. Alternative rapid SVD algorithms can
be used, such as the Lanczos bi-diagonalization method [16, 17], the
truncated SVD [18] or random projections [19] as was recently ap-
plied in seismology [20]. However, these algorithms do not solve the
artifacts issue.

Capitalizing on recent progress in algebra on random projection
and probabilistic algorithms [21–24], we present here a novel effi-
cient approach to denoising which can be easily applied to the large
datasets found in FT-ICR experiments, and more generally, to any
big data analysis. The main driving idea is to avoid explicit com-
putation of data derived quantities, but rather estimate the needed
values, based on a partial sampling of the data. Extending from pre-
vious ideas [19], the denoising algorithm is based on a subsampling
of the data-associated matrix. Here, rather than truncating the rank
by removing some of the components of the SVD decomposition, we
compute a randomized low-rank approximation of the Hankel ma-
trix [24] that retains preferentially more signal than noise.

We show that this leads to a substantial improvement of the pro-
cessing in terms of speed, with little compromise on the quality, al-
lowing gains of two to three orders of magnitude in processing time
and in memory size. Applications of this approach are demonstrated
on the large datasets obtained in FT-ICR Mass Spectrometry.

Methods
Denoising algorithm. We propose here a simplified algorithm based
on a random sampling of the transfer function associated with the ma-
trix viewed as an operator. For large enough samplings, the data con-
sistency is ensured through a variant of the Johnson-Lindenstrauss
lemma [21, 23].

The auto-regressive (AR) model assumes a regularly sampled
complex harmonic signal. For such a signal composed of a sum of
P components, each data point X

l

can be expressed as a linear com-
bination of the P preceding data points [11, 12]. This implies that
the Hankel matrix H , built from the data series by copying a shifted
version of the data series on each line:

(H
i,j

) = (X
i+j�1) [1]

is rank-limited to P in the absence of noise. In noisy datasets, this
matrix becomes full-rank because of the partial decorrelation of the
data points induced by the noise.

These properties have been used by many signal-improving tech-
niques. Cadzow [14] proposed to perform the Singular Value Decom-
position (SVD) of the matrix H , and compute a matrix ˜H by trun-
cating to the K largest singular values �

k

. ˜H is not strictly Hankel-
structured anymore, but a denoised signal ˜X can be reconstructed by
taking the average of all its antidiagonals. (see eq 1)

˜X
l

= mean

i+j=l+1
(

˜H
ij

) [2]

Unlike linear filtering approaches such as the Wiener filter, the signal
is denoised without making assumptions on the signal line-widths,
let alone modifying the line-widths.

The matrix H can also be considered as an operator H that con-
centrates its input vectors onto the main singular vectors that corre-
spond to correlations in the matrix, and thus to harmonic components
in the series X . Earlier studies [21,25] have shown that we can sam-
ple H efficiently by observing its effect on a set of random vectors.
For a large enough sampling, the effect of H is essentially captured
with an emphasis on the correlations, therefore taking more from the
signal than from the noise. This random sampling considerably re-
duces the size of the problem and has already been used in the anal-
ysis of very large datasets [23, 26, 27].

From the data vector X of length L, let form the (M ⇥N) Han-
kel matrix H using eq 1. Then compute the matrix Y as the product

of H by a set of K random unit vectors handled as a matrix ⌦.

Y
(M⇥K)

= H
(M⇥N)

⌦

(N⇥K)
[3]

with M + N � 1 = L and the following relations: K  M and
M  N . The matrix Y is thus much smaller than H . M is chosen
at will and called the order of the analysis. A QR factorization of
Y is performed Y = QR with the matrix Q, as a reduced rank or-
thonormalized basis of H . From this decomposition the matrix ˜H is
built:

˜H = QQ⇤H [4]

˜H is the projection of H on the reduced rank orthonormalized basis
Q and is a rank K approximation. Unlike the SVD method which
gives the low-rank approximate closest to H in sense of the Frobe-
nius norm [28], the random projection gives less tight bounds on H
recovery. It has been shown [24] that, for a signal containing ex-
actly P components, this approximation is bound (in term of spectral
norm) with a probability larger than 1� 3p�p with p = K � P , to:

���H � ˜H
��� 

h
1 + 9

p
K
p
M

i
�
P+1 [5]

and �
P+1 the P + 1 largest singular value of H .
˜X is finally rebuilt from ˜H in a step similar to the one performed

in the SVD approach. We propose to call this approach rQRd, stand-
ing for random QR denoising.

The approach described here relies heavily on the Hankel struc-
ture of the underlying matrix, built from the AR model. A slightly
different expression of this model leads to Toeplitz matrices which
present very similar properties [12].

Fast Hankel matrix product. The Hankel structure of H implies that
applying this matrix to a vector is equivalent to computing the con-
volution of the data series with this vector. Thanks to the proper-
ties of the Fast digital Fourier Transform (FFT), fast Hankel matrix
product algorithms can be designed that perform this operation much
more rapidly and with a much smaller memory footprint than direct
multiplication [13,29]. This approach presents a processing cost pro-
portional to O(L log(L)) rather than O(MN). In the same manner,
using fast Hankel matrix-vector multiplications, the total cost of the
product of H with ⌦ can be reduced to O(KL log(L)) rather than
O(KMN) (recall that K  M  N  L = M +N � 1).

By combining equations (2) and (4) the denoised signal can also
be computed from Q and Q⇤H using fast Hankel matrix-vector mul-
tiplications. The result of the randomized algorithm for rank-K ap-
proximation is a M ⇥ K matrix Q and a K ⇥ N matrix U that
approximate H from (4) via

H
i,j

⇡ ˜H
i,j

=

KX

k=1

Q
i,k

U
k,j

[6]

where Q is obtained from the QR decomposition and U = Q⇤H
(computed again using the fast Hankel matrix product). It follows
from (6) that the sum over the ith antidiagonal of ˜H expressed for j
ranging from j1 = max(i�M + 1, 1) to j

m

= min(i, N) is:

jmX

j=j1

˜H
i�j+1,j =

KX

k=1

jmX

j=j1

Q
i�j+1,kUk,j

[7]

=

KX

k=1

jmX

j=j1

Q(k)
i,j

U (k)
j

[8]

=

KX

k=1

(Q(k) · U (k)
)

i

[9]
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cessing in terms of speed, with little compromise on the quality, al-
lowing gains of two to three orders of magnitude in processing time
and in memory size. Applications of this approach are demonstrated
on the large datasets obtained in FT-ICR Mass Spectrometry.

Methods
Denoising algorithm. We propose here a simplified algorithm based
on a random sampling of the transfer function associated with the ma-
trix viewed as an operator. For large enough samplings, the data con-
sistency is ensured through a variant of the Johnson-Lindenstrauss
lemma [21, 23].

The auto-regressive (AR) model assumes a regularly sampled
complex harmonic signal. For such a signal composed of a sum of
P components, each data point X
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centrates its input vectors onto the main singular vectors that corre-
spond to correlations in the matrix, and thus to harmonic components
in the series X . Earlier studies [21,25] have shown that we can sam-
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For a large enough sampling, the effect of H is essentially captured
with an emphasis on the correlations, therefore taking more from the
signal than from the noise. This random sampling considerably re-
duces the size of the problem and has already been used in the anal-
ysis of very large datasets [23, 26, 27].

From the data vector X of length L, let form the (M ⇥N) Han-
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The approach described here relies heavily on the Hankel struc-
ture of the underlying matrix, built from the AR model. A slightly
different expression of this model leads to Toeplitz matrices which
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Fast Hankel matrix product. The Hankel structure of H implies that
applying this matrix to a vector is equivalent to computing the con-
volution of the data series with this vector. Thanks to the proper-
ties of the Fast digital Fourier Transform (FFT), fast Hankel matrix
product algorithms can be designed that perform this operation much
more rapidly and with a much smaller memory footprint than direct
multiplication [13,29]. This approach presents a processing cost pro-
portional to O(L log(L)) rather than O(MN). In the same manner,
using fast Hankel matrix-vector multiplications, the total cost of the
product of H with ⌦ can be reduced to O(KL log(L)) rather than
O(KMN) (recall that K  M  N  L = M +N � 1).

By combining equations (2) and (4) the denoised signal can also
be computed from Q and Q⇤H using fast Hankel matrix-vector mul-
tiplications. The result of the randomized algorithm for rank-K ap-
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Hij = xi+j�1

Y = H⌦

Y = QR

H̃ = QQ⇤H

x̃p = hH̃ijii+j�1=p

sum of K Fast Matrix products

Here, Q(k) is the L⇥N Toeplitz matrix formed from the L+N � 1

long vector [0, ....0, Q
k,1, ..Qk,M

, 0, ...., 0] with (N�1) zeros added
on each extremities, U (k) is the N ⇥ 1 vector whose entries are
U (k)

j

= U
k,j

and (Q(k) · U (k)
) denotes the matrix-vector product,

which is computed again using a fast algorithm.
Evaluating the right-hand side of (9) requires K fast Toeplitz

matrix-vector multiplications for each i = 1, ..L, for a total cost pro-
portional to KL log(L). It is never necessary to explicitely express
or calculate the matrix ˜H , but just to sum over its antidiagonals.

We gave to this implementation of the rQRd algorithm, the name
urQRd standing for uncoiled random QR denoising. Both algorithms
implement the same analytical procedure but differ only in the imple-
mentation details. Only one parameter determines the computation
and should be provided by the user: the rank K of the reduced Han-
kel matrix. The order M of the H matrix (see eq 3) can also be
adapted, but plays a lesser role in the outcome of the analysis.

Implementation. The presented algorithms have been implemented
in python, relying on standard mathematical libraries, and using the
standard optimization performed in these libraries.

The dominant costs of the algorithm are the initial product with a
random matrix (eq (3)) and the final summation over ˜H antidiagonals
(eq (9)). Both steps can easily be distributed over a large number of
processors, as all terms of the sums are independent and do not need
any kind of communication, providing an additional gain in speed.
This was not undertaken here, as we are solely using the standard
libraries.

The detailed algorithms for fast Hankel matrix product, rQRd
and urQRd are presented in Supp Info S1-S3. The code of the pro-
grams of the SVD, rQRd and urQRd algorithms ad well as the FT-
ICR MS datasets are available at http://urqrd.igbmc.fr.

Results
Effect of rank. Robustness with respect to the rank K used for de-
noising is an important parameter. In the classical SVD approach,
the rank is set to the number of expected components present in the
signal, as the denoising is optimum at this point. However, this pa-
rameter is usually quite difficult to determine a priori in biophysical
experiments, in particular for FT-ICR MS (see below). It plays a dif-
ferent role in rQRd as exemplified in figures 1 and 2. The algorithm
was tested here on a harmonic synthetic dataset presenting a set of
sharp frequencies. While generic enough to present the feature of the
method as general, this dataset presents some analogy with a FT-ICR
MS experiment.

Figure 1 presents the effect of the rank on the aspect of the fil-
tered spectrum. As expected, SVD truncation to rank K of the Han-
kel matrix produces spectra in which nearly exactly K lines can be
observed. This leads inevitably to additional spurious lines when
K > P and to missing lines when K < P . In the present case,
where the smallest signals are vanishingly small and remain buried
in the noise, spurious peaks appears even for K = P . In contrast,
rQRd does not constrain the rank of the Hankel matrix as strongly.
As a result, the remaining noise is spread evenly across the spectral
width, leading to spectra which appear less distorted.

The quality of denoising is measured as the cartesian distance of
the denoised dataset to the ideal noise-free data used for the simula-
tion. With this measure, expressed as SNR gains, it can be observed
that SVD presents high SNR for small K, whereas rQRd SNR keeps
improving with larger K.

FIGURE 1 located here - one column -
Inspection of the spectra shows that while the peak frequencies

are perfectly conserved, the weak intensities are distorted in a sys-
tematic manner, in particular for small values of K. In many cases,
the precision on the signal intensity is as important as on its position.
However, due to the way the rQRd denoising algorithm weights the

various components of the signal in order to separate the signal and
the noise, the relative intensity of each frequency cannot be insured,
in particular for signals intensities close to the noise level. While this
effect is important for K ⇡ P it tends to weaken for larger K.

FIGURE 2 located here - one column -
Figure 2 presents the evolution of the SNR gain with respect to

the rank. While SVD presents the highest gain for a rank K equal to
the number of lines P , rQRd presents a broad region of high SNR,
for K in the range 1.5P to 4P .

It is a usual approach to apply a denoising procedure in an iter-
ative manner in order to improve noise rejection. This can be per-
formed by applying the whole procedure several times, or by com-
puting several successive multiplications of ⌦ by H [14, 24]. The
first option prove to be more effective thanks to the combined effect
of the two successive steps: the low rank projection of H (eq 4) and
the antidiagonal averaging (eq 2). This averaging is nearly isometric
but brings back the system projected onto a subspace of dimension
K to the original space of dimension M . Thus alternating the inde-
pendent steps of antidiagonal averaging and rank reduction allows a
strong noise reduction. It is remarkable that iterating rQRd provides
higher SNR in an even broader range of ranks.

FIGURE 3 located here - one column -

Processing efficiency.Figure 3 presents a comparison of SVD,
rQRd and urQRd processing times and efficiencies. SVD and rQRd
are limited by the amount of computer memory (here 32 Gb), and
stop for datasets larger than ⇡ 32 000 and 64 000 points respectively,
a limit which is removed by the urQRd algorithm which does not re-
quire large H and ˜H matrices to be stored in memory. It can be seen
that the rQRd algorithm affords important SNR gains, with values
over 20 dB in the case of large datasets. This simulation has been run
with a rank on the order of 10 times the number of expected signals,
a conditions which is favorable to rQRd.

Usually many sources of noise are present in a measurement, and
most of them are actually non-additive (multiplicative or jitter noise
due to fluctuations in the apparatus; scintillation noise due to fluctua-
tion in the object under scrutiny; missing or corrupted points; etc...).
Different types of noise were tested on a synthetic dataset, (Supp Info
figure S5) and it was found that rQRd is efficient in most of these sit-
uations.

A large processing time improvement for rQRd over SVD is ob-
served in figure 3, with a speed-up of approximatively ⇥40 for the
largest datasets. This difference can be explained in two ways. First,
the QR factorization step provides a large speed improvement when
compared to the burdensome SVD decomposition. Moreover, the Y
matrix on which it is applied is quite smaller than H in the typical
case of a large data measurement in which the number of lines is
much smaller than the number of acquired points (K ⌧ L).

Because of the FFT based implementation of the matrix prod-
ucts, urQRd presents an additional speed improvement, displaying
a factor ⇥25 over rQRd for the 64 000 points datasets. Moreover,
memory requirements are much weaker and figure 3 presents results
for interferograms with up to 4 096 000 complex points.

The observed processing time asymptotic behavior displays the
expected trend, with N2.1 for rQRd and N1.1 for urQRd, to be com-
pared with a dependence in N2.9 for SVD. urQRd is slower for small
datasets because the additional complexity dominates at lower sizes.
Finally, it should be noted that because the FFT algorithm time is
not regular on the vector length, the urQRd processing time reflects
this irregularity in figure 3 where the processed lengths alternates be-
tween (2

n+3
5

3
) and (2

n+3
5

2
7) (multiples of 1000 and 1400).

Application to FT-ICR MS. FT-MS measures the frequencies of ions
orbiting in an electric (Orbitrap [30]) or magnetic field (ICR). This
is the MS technique with the highest resolution today, with m/�m
over 1 000 000. FT-MS therefore knows a growing interest, in par-
ticular for proteomics, metabolomics and petroleomics [31, 32]. In

Footline Author PNAS Issue Date Volume Issue Number 3

nal is polluted with spurious artifacts that are indistinguishable from
the real signal. Additionally, the SVD decomposition is slow and
scales in O(mn2

) operations. Alternative rapid SVD algorithms can
be used, such as the Lanczos bi-diagonalization method [16, 17], the
truncated SVD [18] or random projections [19] as was recently ap-
plied in seismology [20]. However, these algorithms do not solve the
artifacts issue.

Capitalizing on recent progress in algebra on random projection
and probabilistic algorithms [21–24], we present here a novel effi-
cient approach to denoising which can be easily applied to the large
datasets found in FT-ICR experiments, and more generally, to any
big data analysis. The main driving idea is to avoid explicit com-
putation of data derived quantities, but rather estimate the needed
values, based on a partial sampling of the data. Extending from pre-
vious ideas [19], the denoising algorithm is based on a subsampling
of the data-associated matrix. Here, rather than truncating the rank
by removing some of the components of the SVD decomposition, we
compute a randomized low-rank approximation of the Hankel ma-
trix [24] that retains preferentially more signal than noise.

We show that this leads to a substantial improvement of the pro-
cessing in terms of speed, with little compromise on the quality, al-
lowing gains of two to three orders of magnitude in processing time
and in memory size. Applications of this approach are demonstrated
on the large datasets obtained in FT-ICR Mass Spectrometry.

Methods
Denoising algorithm. We propose here a simplified algorithm based
on a random sampling of the transfer function associated with the ma-
trix viewed as an operator. For large enough samplings, the data con-
sistency is ensured through a variant of the Johnson-Lindenstrauss
lemma [21, 23].

The auto-regressive (AR) model assumes a regularly sampled
complex harmonic signal. For such a signal composed of a sum of
P components, each data point X

l

can be expressed as a linear com-
bination of the P preceding data points [11, 12]. This implies that
the Hankel matrix H , built from the data series by copying a shifted
version of the data series on each line:

(H
i,j

) = (X
i+j�1) [1]

is rank-limited to P in the absence of noise. In noisy datasets, this
matrix becomes full-rank because of the partial decorrelation of the
data points induced by the noise.

These properties have been used by many signal-improving tech-
niques. Cadzow [14] proposed to perform the Singular Value Decom-
position (SVD) of the matrix H , and compute a matrix ˜H by trun-
cating to the K largest singular values �

k

. ˜H is not strictly Hankel-
structured anymore, but a denoised signal ˜X can be reconstructed by
taking the average of all its antidiagonals. (see eq 1)

˜X
l

= mean

i+j=l+1
(

˜H
ij

) [2]

Unlike linear filtering approaches such as the Wiener filter, the signal
is denoised without making assumptions on the signal line-widths,
let alone modifying the line-widths.

The matrix H can also be considered as an operator H that con-
centrates its input vectors onto the main singular vectors that corre-
spond to correlations in the matrix, and thus to harmonic components
in the series X . Earlier studies [21,25] have shown that we can sam-
ple H efficiently by observing its effect on a set of random vectors.
For a large enough sampling, the effect of H is essentially captured
with an emphasis on the correlations, therefore taking more from the
signal than from the noise. This random sampling considerably re-
duces the size of the problem and has already been used in the anal-
ysis of very large datasets [23, 26, 27].

From the data vector X of length L, let form the (M ⇥N) Han-
kel matrix H using eq 1. Then compute the matrix Y as the product

of H by a set of K random unit vectors handled as a matrix ⌦.

Y
(M⇥K)

= H
(M⇥N)

⌦

(N⇥K)
[3]

with M + N � 1 = L and the following relations: K  M and
M  N . The matrix Y is thus much smaller than H . M is chosen
at will and called the order of the analysis. A QR factorization of
Y is performed Y = QR with the matrix Q, as a reduced rank or-
thonormalized basis of H . From this decomposition the matrix ˜H is
built:

˜H = QQ⇤H [4]

˜H is the projection of H on the reduced rank orthonormalized basis
Q and is a rank K approximation. Unlike the SVD method which
gives the low-rank approximate closest to H in sense of the Frobe-
nius norm [28], the random projection gives less tight bounds on H
recovery. It has been shown [24] that, for a signal containing ex-
actly P components, this approximation is bound (in term of spectral
norm) with a probability larger than 1� 3p�p with p = K � P , to:

���H � ˜H
��� 

h
1 + 9

p
K
p
M

i
�
P+1 [5]

and �
P+1 the P + 1 largest singular value of H .
˜X is finally rebuilt from ˜H in a step similar to the one performed

in the SVD approach. We propose to call this approach rQRd, stand-
ing for random QR denoising.

The approach described here relies heavily on the Hankel struc-
ture of the underlying matrix, built from the AR model. A slightly
different expression of this model leads to Toeplitz matrices which
present very similar properties [12].

Fast Hankel matrix product. The Hankel structure of H implies that
applying this matrix to a vector is equivalent to computing the con-
volution of the data series with this vector. Thanks to the proper-
ties of the Fast digital Fourier Transform (FFT), fast Hankel matrix
product algorithms can be designed that perform this operation much
more rapidly and with a much smaller memory footprint than direct
multiplication [13,29]. This approach presents a processing cost pro-
portional to O(L log(L)) rather than O(MN). In the same manner,
using fast Hankel matrix-vector multiplications, the total cost of the
product of H with ⌦ can be reduced to O(KL log(L)) rather than
O(KMN) (recall that K  M  N  L = M +N � 1).

By combining equations (2) and (4) the denoised signal can also
be computed from Q and Q⇤H using fast Hankel matrix-vector mul-
tiplications. The result of the randomized algorithm for rank-K ap-
proximation is a M ⇥ K matrix Q and a K ⇥ N matrix U that
approximate H from (4) via

H
i,j

⇡ ˜H
i,j

=

KX

k=1

Q
i,k

U
k,j

[6]

where Q is obtained from the QR decomposition and U = Q⇤H
(computed again using the fast Hankel matrix product). It follows
from (6) that the sum over the ith antidiagonal of ˜H expressed for j
ranging from j1 = max(i�M + 1, 1) to j

m

= min(i, N) is:

jmX

j=j1

˜H
i�j+1,j =

KX

k=1

jmX

j=j1

Q
i�j+1,kUk,j

[7]

=

KX

k=1

jmX

j=j1

Q(k)
i,j

U (k)
j

[8]

=

KX

k=1

(Q(k) · U (k)
)

i

[9]

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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much Faster - much Lighter
processing times 
SVD in       MN2 
urQRd in   KLlog(L)	

K ≪ M < N < L

44.000 points!
SVD : 42 min!
urQRd : 4.1 sec

1.024.000 points!
urQRd : 132 sec

4.096.000 points!
urQRd : 10 min

better noise rejection

urQRd is very fast
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Example of urQRd on synthetic data

Fig. 1. Comparison of the the SNR gain afforded by the de-noising methods as a function
of the rank. The computations are performed here on a synthetic complex 2000 points
data-set containing 20 frequencies. a) Fourier Transform (FT) of the initial synthetic data-
set composed of 20 lines of varying intensity. b) FT of the test data-set, with an added
Gaussian white noise. SNR of the time-domain data-set is -0.14 dB. c-e-g) FT of the SVD
processed of the synthetic data-set with with varyingK. d-f-h) FT of the rQRd processed of
the synthetic data-set with with varying K. c-d) rQRd and SVD processed of the synthetic
data-set with K = 10 SNR gains : SVD 8.23 dB rQRd 2.91 dB, e-f) idem with K = 20
SVD 12.00 dB rQRd 5.13 dB. g-h) idem with K = 80 SVD 6.91 dB rQRd 9.95 dB.

Fig. 2. Comparison of the the SNR gain afforded by the de-noising methods as a function
of the rank. The computations are performed here on a synthetic complex 1000 points
data-set containing 50 components on increasing intensity in a pattern similar to figure 1.
rQRdn indicates the result obtained when iterating the rQRd method n times.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

K=10

K=20

K=80

SVD urQRd

clean noisy

K : estimate of number of 
signals

urQRd is very robust
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Applied to 1D FT-ICR data-setTryptic digest of CytC!
512k transient!
1 second acquisition

Fig. 3. Comparison of the rQRd (bullets) and urQRd (diamonds) de-noising approaches,
as well as the SVD approach (crosses), performed here on a synthetic complex data-set
containing 9 frequencies, and processed with K = 100. Top: processing speed, of the
one methods. Asymptotic behavior fitted on the graph are SVD � n2.83 rQRd � n2.11

and urQRd � n1.71. Cross-over between rQRd and urQRd is around 40 000 points.
Bottom: de-noising efficiency, expressed as the SNR gain afforded by the de-noising
method.

Fig. 4. Processing of a single-scan FT-ICR mass spectrum of a trypsin digest of Cytochrome C. Bottom original spectrum, SNR measured on the m/z 728.8388
peak is 24.0 dB. Top same spectrum after urQRd processing (K = 1000), SNR measured on the m/z 728.8388 peak is 40.7 dB. inset) the m/z 728.8388 peak
corresponds to the TGQAPGFSTDANK2+ ion, m/z 678.3821 to YIPGTK+ and m/z 717.9012 to GEREDLIAYLKK2+. The peak labeled with a star at m/z=686.390,
lacking isotopic structure, is likely to be an experimental artifact. The processed interferogram is 512k points, processed here with K = 1000.

Footline Author PNAS Issue Date Volume Issue Number 7

SVD   ( ~45 days    512Go memory) !
urQRd       25 min       4Go memory

http://urqrd.igbmc.fr
Chiron, L., van Agthoven, M. A., Kieffer, B., Rolando, C. & Delsuc, M.-A. !
Proc Natl Acad Sci USA 111, 1385–1390 (2014).

http://urqrd.igbmc.fr


• Prospectom- novembre 2014 •

Very efficient

Reduction of t1-noise on a 2D NOESY spectrum  ~2minutes
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Compression
• techniques 

• sans perte de données   :   zip 
• avec perte de données   :   jpeg  mp4 

• mesure de la compressibilité 
• quantité d’information 
• parcimonie 

• mesure de la quantité d’information 
• par la compressibilité 
• entropie d’information 

• théorème de Shannon 
• relie la quantité d’information maximale et la taille du canal d’information 

rapport signal/bruit    taille de l’alphabet   ... 

• théorème de Candès 
• relie le nombre de signaux non nuls et le nombre de mesure à réaliser
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Compressed Sensing
• Dispersion des informations dans les données 

• transformée idéale 
• incertitude d’Eisenberg 
• parcimonie 

!
• Examples 

• les pommes d’Hadamard 
• carte des étoiles du ciel 

!
• Compression 

• compression de la mesure et non pas des données 

!
• Théorème de Candès 

• compression sans perte
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7.2. Software. In the spirit of reproducible research [26], a Matlab version of
NESTA will be made available at: http://www.acm.caltech.edu/

~

nesta/
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Abstract

This paper considers the model problem of reconstructing an object from incomplete
frequency samples. Consider a discrete-time signal f 2 C

N and a randomly chosen set
of frequencies ⌦. Is it possible to reconstruct f from the partial knowledge of its Fourier
coe�cients on the set ⌦?

A typical result of this paper is as follows. Suppose that f is a superposition of |T |
spikes f(t) =

P
⌧2T f(⌧) �(t� ⌧) obeying

|T |  CM · (log N)�1 · |⌦|,

for some constant CM > 0. We do not know the locations of the spikes nor their
amplitudes. Then with probability at least 1�O(N�M ), f can be reconstructed exactly
as the solution to the `1 minimization problem

min
g

N�1X

t=0

|g(t)|, s.t. ĝ(!) = f̂(!) for all ! 2 ⌦.

In short, exact recovery may be obtained by solving a convex optimization problem.
We give numerical values for CM which depend on the desired probability of success.

Our result may be interpreted as a novel kind of nonlinear sampling theorem. In
e↵ect, it says that any signal made out of |T | spikes may be recovered by convex
programming from almost every set of frequencies of size O(|T | · log N). Moreover, this
is nearly optimal in the sense that any method succeeding with probability 1�O(N�M )
would in general require a number of frequency samples at least proportional to |T | ·
log N .

The methodology extends to a variety of other situations and higher dimensions.
For example, we show how one can reconstruct a piecewise constant (one- or two-
dimensional) object from incomplete frequency samples—provided that the number of
jumps (discontinuities) obeys the condition above—by minimizing other convex func-
tionals such as the total variation of f .

Keywords. Random matrices, free probability, sparsity, trigonometric expansions, uncertainty
principle, convex optimization, duality in optimization, total-variation minimization, image recon-
struction, linear programming.
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A Surprising Experiment*

FT
!

Randomly throw away 83% 
of samples

* E.J. Candes, J. Romberg and T. Tao.

Deconvolution and 
Compressed Sensing

Jean-Luc Starck, Florent Sureau
J. Bobin, N. Barbey,  A. Woiselle
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A Surprising Result*

Minimum - norm conventional 

linear reconstruction

FT
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•régulation : données simples/creuses - sparsity - 
• K signaux - N mesures - P points dans le spectres 
• hypothèse de peu de signaux :    K<<N<<P 

!
•Le problème devient une simple optimisation convexe 

!
!

• norme l1 ou lO   mais  pas l2 
!
!
!

•Dans certaines conditions 
• R.I.P. 
• dispersion     (FT par exemple) 
• pseudo-inversible 
• linéaire

Compressed Sensing

min(ksk1) avec ky � Tsk2 < �

Restricted Isometry Property

ksk1 =
X

|si| kskp =
⇣X

sp
⌘ 1

p
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going further : Recital algorithm
‣ Resolution EnhanCement by an Iterative Algorithm 
!

• Hypothesis 
‣ The signal is the pulse response of the MS spectrum 
‣ The MS spectrum is composed of isolated peaks 

• Idea 
‣ Find the minimal number of signals that describes the data 
‣ Using Inverse reconstruction 

• Method 
• Minimize 2 targets 

number of lines in spectrum 
distance between experimental and reconstructed data (least-square) 

• use noise estimate as stopping criterium 
• adapted from the Fast Iterative Soft-Thresholding Algorithm 

fast  and  robust
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Inverse reconstruction
• Inverse approach 
• Split algorithm 

‣ Improve alternatively

experimental data

recomputed data

FT

distance
recomputed spectrum

Improve iteratively using  tT()   and soft-thresholding

ksk`1 ky � Tsk`2and

• using Fast Iterative Soft-Thresholding Algorithm  (FISTA)
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Inverse reconstruction
• Inverse approach 
• Split algorithm 

‣ Improve alternatively

experimental data

recomputed data

FT

distance
recomputed spectrum

Improve iteratively using  tT()   and soft-thresholding

ksk`1 ky � Tsk`2and

• using Fast Iterative Soft-Thresholding Algorithm  (FISTA)
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some details
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Some Details

• Generalization of the Euclidean norm :

Definition of the norm ¸

n

. noted ÎxÎ
n

ÎxÎ
n

= [

q
i

x

n

i

]

1/n

So Euclidean norm is ¸2

• we can also define the special ¸

o

norm : ÎxÎ
o

= lim

pæ0 ÎxÎ
p

• what is a sphere in norm ¸

n

?

• spheres in norm ¸

n

with n Ø 1 are convex ∆ easy minimisation

¸

o

is much more tricky !

• ¸

o

counts the number of non-null values,

so minimizing ÎsÎ
o

© minimizing the number of lines.

By chance Candès

1
, in a seminal paper shown that ¸

o

and ¸1 are equivalent on

that matter. So the problem boils down to

min(ÎsÎ1) with Îy ≠ TsÎ2 < noise

1
Candès, E., Romberg, J. & Tao, T. "Robust uncertainty principles: exact signal recon-

struction from highly incomplete frequency information". Inf Theo, IEEE Trans. 52, 489–509

(2006)

1
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Recital algorithm

HiRes acquisition 
standard processing 

13+

Orbitrap Ubiquitin spectrum12+

11+

10+

9+
8+

7+

13+
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Recital algorithm

HiRes acquisition 
standard processing 

13+

Orbitrap Ubiquitin spectrum12+

11+

10+

9+
8+

7+

13+

fast acquisition (10x faster) 
standard processing

fast acquisition 
super-resolution processing 

13+

13+
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other example
• Standard FT  vs  Recital  processing

Fast Spectrum of Apolipoproteine A1 
FT-ICR data 
(30 kD   z=24+   m/z 1271)

Fast Spectrum of Angiotensin 
FT-ICR data 
( m/z 1727)
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isotopic patterns
• isotopic patterns in high resolution produce beats in transient

t
B

⇡ m2

zB
o

in FT-ICR   beat period  tB  is

Lysozyme - FT-ICR spectrum at 9.4T isolated charge state

9+

8+
10+

9+
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simulating the beats

Experimental data simulated data 
from primary sequence

simple mathematical model

Some Details

• Generalization of the Euclidean norm :
Definition of the norm ¸

n

. noted ÎxÎ
n

ÎxÎ
n

= [
q

i

x

n

i

]1/n

So Euclidean norm is ¸2

• we can also define the special ¸

o

norm : ÎxÎ
o

= lim
pæ0 ÎxÎ

p

• what is a sphere in norm ¸

n

?

• ¸

o

counts the number of non-null values,
so minimizing ÎsÎ

o

© minimizing the number of lines.

• spheres in norm ¸

n

with n Ø 1 are convex ∆ easy minimisation
¸

o

is much more tricky !

By chance Candès et al1, in a seminal paper showed that ¸

o

and ¸1 are equivalent
on that matter. So the problem boils down to

min(ÎsÎ1) with Îy ≠ TsÎ2 < noise

Done by using a POCS (Projection Onto Convex Sets) algorithm
convolution product of all isotopic distributions
splitting in spectrum © cosine in transient
convolution theorem ∆ cos

n itemizen transient
where n ¥ number of lines in isotopic pattern

so s(t) ¥ cosn(f�z

t) cos(Ê
o

t)

1
Candès, E., Romberg, J. & Tao, T. "Robust uncertainty principles: exact signal recon-

struction from highly incomplete frequency information". Inf Theo, IEEE Trans. 52, 489–509

(2006)

1

cos

30
(f�zt)
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surprise !

R

Evolution of resolution 
with acquisition time
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surprise !

R

Evolution of resolution 
with acquisition time
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surprise !

R

35k  : 111msec 
Fourier R=4.300 
Recital R=1.700

Fourier Recital

111 msec

Evolution of resolution 
with acquisition time
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surprise !

R

35k  : 111msec 
Fourier R=4.300 
Recital R=1.700

Fourier Recital

111 msec

80k : 250msec 
Fourier R= 7.400 
Recital R=19.500

250 msec

Evolution of resolution 
with acquisition time
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the same in Orbitrap
Fourier

Recital

73 msec Ubiquitine
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the same in Orbitrap
Fourier

Recital

73 msec Ubiquitine
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what about full resolution ?

R = 240.000 
@ m/z = 1590

R = 133.000 
@ m/z = 715

30% faster    2.2 sec vs 3.3 sec 
+30% resolution    R=240k vs 180k

25% faster          1.6 sec vs 1.17 sec 
+18% resolution    R=133k vs 112k
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Denaturated Lysozyme is another story
120k : 380 msec 
Fourier R=21.000 
Recital R=31.000

Fourier Recital
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Spetroscopie n-Dimensionnelle
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FTICR-2D
• principle of 2D FTICR proposed in 1987-88 

nearly as old as 2D NMR
P Pfändler and G Bodenhausen and J Rapin and R 

Houriet and T Gäumann	

Chem Phys Let (1987) vol. 138 (2) 195-200

P Pfaendler, G Bodenhausen, J Rapin, M Walser, T Gaümann	

J Am Chem Soc (1988) vol. 110 (17) 5625-5628

Broad-Band Two- Dimensional FT-ICR 
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J .  Am.  Chem. Soc.. Vol. 11 0, No. 17, 1988 5627 
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Figure 3. Broad-band 2D FT-ICR spectra S ( f I , w 2 )  of methane CH,, 
shown in absolute value mode prior to Fourier transformation with re- 
spect to f I .  The reaction interval i, was 500 ms. The evolution time t l  
was incremented in 120 steps of 1 ps, with 1K data points recorded in 
f 2 .  The light primary ion CH3+ features a slow f ,  modulation, because 
its high cyclotron frequency is near to the initial rf frequency of the 
chirped pulses. 

of the rf source in the t ,  period. In our experiments, this rf 
frequency corresponds to the initial (highest) frequency of the 
chirp. The remaining constant terms in eq 5 do not influence the 
frequencies in the spectrum but merely affect the phases of the 
signals. These phase terms are not relevant in our broad-band 
2D experiments since we use absolute value representations6 

If the relative phase of eq 5 is an odd multiple of x ,  the ions 
will spiral inward during the 7, interval of the second rf pulse and 
will be robbed of most of their kinetic energy, just as in the 
monochromatic 2D experiment. The population of the resulting 
"cold" A+ ions is therefore modulated by [anA - olrf]tl. If both 
pulses PI  and P2 are relatively weak, so that the radius of the 
trajectory in t l  is about 20-50% of the optimum radius, the 
modulation is again found to be approximately cosinusoidal. The 
use of relatively weak rf pulses makes it possible to avoid the 
appearance of signals a t  harmonic frequencies in the w 1  domain 
of the 2D spectrum.' Note that in practice the rf field experienced 
by the ions in the cell is a function of their cyclotron radius.14 
After ion-molecule collisions, fragmentation, or photodissociation 
according to the scheme A+ + C - B+ + D, the resulting product 
ions B+ are re-excited in the usual manner by the third pulse in 
the sequence of eq 1. Normally, the third pulse is also chirped, 
and the signal is observed in the t 2  period without heterodyne 
detection, so that the frequencies in the w2 domain correspond 
to the true (laboratory frame) cyclotron frequencies rather than 
to the offset with respect to an rf carrier frequency. The signal 
of an ion B+, observed at w2 = wB, is modulated by the offset [wA 
- wlrf]  of its precursor A+, and cross-peaks appear if a reaction 
has taken place. 

To illustrate the potential of 2D FT-ICR, we have chosen two 
very simple cases, both involving methane. This choice was 
suggested by the fact that, because of the inverse proportionality 
of cyclotron frequencies and mass-to-charge ratios, the demands 
on the bandwidth are greatest if one considers a mixture of light 
ions such as CH3+ and ions that have more than twice the mass 
such as C2D,+. 

Figure 3 shows a mixed time/frequency domain representation 
of broad-band 2D FT-ICR spectra of methane. Ionization pro- 
duces only the two primary ions CH3+ and CH4'+. One also 
observes secondary ions CHS+, but these signals are modulated 
as a function of t l  at the same frequency as the CHI'+ signals, 
providing evidence that the secondary CH5+ ions are daughters 
of the primary ions CHI'+. 

This relationship may be appreciated much more readily after 
Fourier transformation with respect to t l .  The two-dimensional 

(14)  Huang, S .  K.; Rempel, D. L.: Gross, M .  L. Int .  J .  Mass Spectrom. 
Ion Processes 1986, 72, 15. 

.................. ......... 0 4  ,.- 
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Figure 4. Two-dimensional broad-band FT-ICR spectrum S ( w l , w 2 )  of 
methane CHI, derived from the data shown in part in Figure 3. The 
matrix of 120 X 1K was extended to 256 X 2K by zero-filling prior to 
Fourier transformation. The spectrum is shown in absolute value mode. 
Higher contours have been filled in to enhance contrast. The dashed line 
of primary ions features resonances due to CH3+ and CH,", analogous 
to diagonal peaks in 2D NMR. The dotted lines indicate how the 
modulation of the primary ion CH4'+ is transferred to the daughter ions 
CH3+ and CH5+, as evidenced by two cross-peaks emphasized by arrows. 
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both their cyclotron radius (i.e., to the product of their
cyclotron frequency and t1) and their abundance. The rela-
tive ICR signal magnitude of the product ions is proportion-
al to their abundance, i.e., to the radius of their precursors,
which is determined by the product of the cyclotron fre-
quency of these precursors and t1.

CH5
+ is a product ion which is created by ion–molecule

reactions between CH4
•+ and neutral methane [40]. The fre-

quency of the relative ICR signal magnitude of CH5
+ in the t1

interval is therefore equal to the cyclotron frequency of its
CH4

•+ precursor. This is evident in Fig. 2, where the CH5
+

peak is maximum when the CH4
•+ peak is also maximum.

CH3
+ is both a precursor that is present at the start of the pulse

sequence and a product of collisions involving CH4
•+. Its ICR

signal therefore has two frequencies in the t1 interval: its own
cyclotron frequency and the cyclotron frequency of CH4

•+.
By recording FT-ICR mass spectra using systematically

incremented durations t10n1×Δt1 (in which n1 is the num-
ber of increments, with n1

max giving the resolution in the
vertical dimension, and Δt1 the increment, which gives us
the sampling rate and the Nyquist frequency, i.e., the lowest
m/z ratio in the vertical dimension), one can observe the
modulations of the relative ICR signal magnitude of all ions
in a sample and correlate them with the relative ICR signal
magnitudes of their fragments. It is sufficient to calculate the
Fourier transform of each time transient recorded as a

function of the detection interval t2 and to calculate another
Fourier transform as a function of the evolution interval t1.
In the resulting 2D cyclotron frequency spectrum, all frag-
ment ion peaks appear along the ω2 axis (usually plotted
horizontally) and their precursors appear along the ω1 axis
(which is by convention plotted vertically).

This pulse sequence has the potential to offer an efficient
alternative to FT-ICR MS/MS. Indeed, whereas in MS/MS
the ions of interest must first be identified by the user before
setting the isolation and fragmentation parameters, in 2D
FT-ICR MS all ions in the sample can be fragmented at the
same time. Furthermore, ion isolation can lead to ion losses
and therefore to losses in sensitivity. In a 2D FT-ICR MS
experiment, the ions need not be isolated in the ICR cell.
Finally, because of the properties of the Fourier transform,
all time transients that are acquired contribute to the signal-
to-noise ratio of all ion species in the sample, both of
precursor ions and of their fragments, whereas in MS/MS
the time transients that are accumulated for each spectrum
only serve to improve the signal-to-noise ratio of one se-
lected parent ion and its fragments [41].

Pfändler et al. recognized that CID and ion–molecule
reactions are not the only fragmentation modes that can be
used for 2D FT-ICR MS: any process leading to new ions
whose efficiency depends on the cyclotron radius of the
precursor ions can be used. In a subsequent study, they

Fig. 2 Pulse sequence of 2D
Fourier transform ICR (FT-
ICR) mass spectrometry (MS)
proposed by Pfändler et al. (top)
and evolution of the product ion
peaks induced by ionizing
methane by electron ionization
with the evolution interval t1
between the first two radiofre-
quency pulses (bottom). ECD
electron capture dissociation,
IRMPD infrared multiphoton
dissociation. (Adapted with
permission from Pfaendler et al.
[37])
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of new double-quadrupole time-of-flight instruments during
the elution time of a chromatographically windowed MS
selection covering the full useful mass range [52].

Recent developments in 2D FT-ICR MS

Since 2000, considerable advances have been made in main-
stream computer capacity: from 2003 onwards, personal
computers have been equipped with 64-bit processors, file
systems, and improved operating systems. This increased
speed, accuracy, the size of data files (which increased from
1 GB to 4 PB), and the size of accessible memory. The
storage capacities of hard drive disks improved dramatically
(the terabyte limit was broken in 2007), which facilitates the
recording of large data sets. The electronics of FT-ICR MS
acquisition systems have been fully digitized, thereby mak-
ing excitation pulses very stable and allowing easy changes
of the experimental protocol.

In this context, revisiting 2D FT-ICR MS in order to turn
it into a fully fledged, high-resolution analytical technique
became possible. In addition to the advances in data acqui-
sition and processing, gas-free fragmentation techniques
such as IRMPD and ECD have become routinely available
on commercial FT-ICR instruments [53]. Because no gas
needs to be injected into the ICR cell, the ions do not
undergo collisions with neutrals and ion packets remain
coherent. The use of ECD or IRMPD therefore improves
both the sensitivity and the resolution of MS/MS and 2D
FT-ICR MS.

In 2010, we implemented Pfändler’s experiment on a 9.4-
T ApexQE FT-ICR instrument from Bruker Daltonics (Bre-
men, Germany) with a positive nanoESI ion source and
IRMPD as a fragmentation method [54]. Because of the
improvements in FT-ICR technology, we were able to re-
cord time transients over an analytically useful mass range
(m/z 87.67-2,000) in the (horizontal) 5 2 domain. The incre-
ment of the evolution time was Δt100.3 μs, which corre-
sponds to a maximum measured frequency of 1.667 MHz
and an m/z 87.67-2,000 mass range in the (vertical) 5 1

domain.
Despite recent advances in computer technology, the size

of the data sets that we were able to record did not afford the
kind of resolution that FT-ICR MS users would like to see:
the data-processing program that we used, NMR Processing
Kernel, had been developed for NMR spectroscopy [55], in
which data sets are typically much smaller than in FT-ICR
MS, and had been written in 32-bit code. To acquire enough
time transients as a function of t1 to resolve the ions in the
“vertical” 5 1 dimension, we had to sacrifice high resolution
in the “horizontal” 5 2 dimension. We recorded 2D mass
spectra with 2,048 time transients comprising 32,768 data
points each, leading to a file size of 256 MB.

The samples we used in this study were well-known
peptides, angiotensin I, fragment 1–8 of bradykinin, and
substance P. In Fig. 3 we show the 2D FT-ICR MS spectrum
of fragment 1–8 of bradykinin with a number of in-source
fragments, which are precursor ions in the ICR cell. The 2D
mass spectrum features several characteristic lines: the au-
tocorrelation line (circled), which shows the modulation of
the relative ICR signal magnitude of the precursor ions with
their own cyclotron frequencies, the “horizontal” spectra of
fragment ions (horizontal fragment ion spectrum), and the
“vertical” spectra of precursor ions (vertical precursor ion
spectrum). A short glossary for 2D MS can be found at the
end of this article.

We observed fragments similar to those obtained in
IRMPD MS/MS spectra, albeit with low intensities because
they were excited three times less than their precursor ions.
We also observed harmonics of each peak in the vertical
dimension because the cyclotron radii of the ions are not
modulated sinusoidally, as predicted by Guan and Jones
[56]. Horizontally, the resolution of the peaks increases with
cyclotron frequency and decreases with m/z ratio, as
expected from Fourier analysis. The resolution in the verti-
cal domain showed the same behavior, i.e., it is inversely
proportional to m and did not depend on the cyclotron
frequency in the horizontal domain. Finally, we observed
considerable scintillation noise, which led to vertical stripes
in the 2D spectrum at the frequencies of the most intense
peaks.

Scintillation noise proved to be a significant problem in
2D FT-ICR MS spectra because spurious peaks can lead to
errors in determining fragmentation paths. To remove scin-
tillation noise from 2D mass spectra, we applied an algo-
rithm based on singular value decomposition that was

Fig. 3 Two-dimensional FT-ICR MS spectrum of bradykinin using
IRMPD fragmentation and Cadzow denoising (30 lines). Inserts
enlargements of the b6→b6-H2O and the b6→b2 peaks. The autocor-
relation line is circled. (Data published in van Agthoven et al. [59]
reprocessed)
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Autocorrelation	

line

Two-dimensional FT-ICR MS spectrum of 
bradykinin using IRMPD fragmentation 
and Cadzow denoising (30 lines). Inserts 
enlargements of the b6 →b6-H2O and the 
b6 →b2 peaks.

Fragment ion spectrum

Pr
ec

ur
so

r i
on

 sp
ec

tru
m

van Agthoven, M. A., Delsuc, M.-A., Bodenhausen, G. & Rolando, C.!
Anal Bioanal Chem 405, 51–61 (2013).
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Is 2D FTMS useful ?
• ultimate DIA 

• Acquisition Times 
‣ assume       MS-MS : 200 scans    /   2k increment 2D FTICR 

!
!
!
!
!

• 2D FTICR 
• Redundancy 

all fragments are measured only once  -  in one 2D peak. 
• Sensitivity 

Fourier Gain on all peaks : as if each fragments has been measured 30 min  (x 0.5) 
• Resolution 
‣ MS1 : R ~200             F1 in 2D : R ~1000 
‣ 2D spectroscopic space   MUCH LARGER

peaks to 
fragment MS-MS 2D FTICR

5 1 min 30 min
50 10 min 30 min
500 2 hours 30 min
5000 20 hours 30 min
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Resolution in 2D
• Resolution 

• R is related to the maximum number of signals that can be packed in 
the spectrum 

• In 2D  R  is asymmetric 
• R1 << R2  < Ropt 

• eg : R1 = 1.000  R2 = 20.000 
!

• But 
• maximum number of signals to pack in the 2D spectrum is R1 x R2 

• eg : R2D = 20.000.000

R =
m

�m

F1

F2

F

F
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Different optimisations
• Framentation 

• initially by CID (1987) 
• reduces resolution 

• IRMPD 
! ! van Agthoven, M. A., Delsuc, M.-A. & Rolando, C. Two-dimensional FT-ICR/MS with IRMPD as     

fragmentation mode. International Journal of Mass Spectrometry 306, 196–203 (2011).!

• ECD 
! ! van Agthoven, M. A., Chiron, L., Coutouly, M.-A., Delsuc, M.-A. & Rolando, C. Two-Dimensional     

ECD FT-ICR Mass Spectrometry of Peptides and Glycopeptides. Anal Chem 84, 5589–5595 (2012).!
!
• “Pulse sequences” 

• optimisation du signal 
! ! van Agthoven et al. Optimization of the discrete pulse sequence for two-dimensional FT-ICR     

mass spectrometry using infrared multiphoton dissociation. International Journal of Mass 
Spectrometry (2014).
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FT-ICR simulator
Chirp pulse

ion trajectory

Swept pulse	
Frequency : 200.000-50.000 kHz	
sweep width : 150.000 kHz    sweep steps : 1000	
duration : 1.000 msec 	
Epp : 1666.67 V/m	
approx excitation radius : 11.82 mm	!
resonant frequency 144151.41 Hz	
final radius : 7.56 mm
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Improvements over time

effective rank of the Toeplitz data matrix [Xq] after it is de‐
noised. The number of iterations is the number of iterations
used to reconstruct [Xq]. This parameter has a large incidence on
the time used by the calculation. Finally, the order of the
calculation q is a number between 2× p and half the size of the
horizontal dimension (i.e. 16384 in this study) and it determines
the quality of the calculation.
The spectra were plotted using NMRnotebook 2.60, a

software purchased from NMRTEC (Illkirch‐Graffenstaden,
France) and developed to process, visualize and analyze 1D
and 2D NMR spectra.

RESULTS AND DISCUSSION

Figure 1 shows the comparison between the 2D mass
spectrum of bradykinin without Cadzow procedure and
with Cadzow procedure. In both spectra, the horizontal
dimension represents the cyclotron frequencies of the ions
(32768 is equivalent to the Nyquist frequency of the
spectrum, i.e. 1667 kHz, which, for an instrument with a
9.4 T magnetic field, corresponds to m/z 86.7). The vertical
dimension corresponds to the correlation frequencies, i.e. the
frequencies with which the ion signal amplitude varies

Figure 1. 2D IRMPD mass spectrum of bradykinin (1pmol/μL in MeOH/water with 0.1% formic acid) using IRMPD (50% for
0.1 s) (a) without application of the Cadzow algorithm and (b) with application of the Cadzow algorithm using 30 lines, 10
iterations and an order of 500. Cyclotron frequencies are represented horizontally (fNyquist = 1667kHz=32768 a.u., corresponding
to a m/z 86–1000 mass range) and correlation frequencies are represented vertically (fNyquist = 1000kHz=2048 a.u., corresponding
to am/z 144–1000mass range). Although the size of the data set is 32768× 2048 points, we chose to represent 10000× 300 points for
better visibility, corresponding to m/z 708–203 horizontally and m/z 741–423 vertically. *Harmonics of the signal according to t1.

M. A. van Agthoven et al.

wileyonlinelibrary.com/journal/rcm Copyright © 2011 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2011, 25, 1609–1616

1612

2011 : bradykinin - IRMPD

2012 : BPTI - ECD

2014 : triglycerid  - high resolution

    van Agthoven, M. A. V., Delsuc, M.-A. & Rolando, C.. Int 
J Mass Spect. 306, 196–203 (2011).

Because the resolution of the 2D mass spectrum is insufficient
to measure the mass of an electron, these reactions are along
the following lines:

= −
y

n p
n

x
(3)

In the case shown in Figures 2 and 3, n = 2 and p = 1, and
the equation of the line is y = x/2. Because MH+ is not a
product of eq 2 but its monoisotopic ion is a fragment of the
monoisotopic ion of MH2

2+, its peak is on the horizontal line
corresponding to the fragmentation of MH2

2+, but not on the y
= x/2 line.
Figure 4 shows the 2D mass spectrum of a mixture of

synthetic glycopeptides. in the MS spectrum, we can see, for

each peptide in the sample, ions MH+, MH2
2+ and the singly

charged peptide after losing the sugar, which is an in-source
fragment (see Supporting Information Figure 5). The peaks
corresponding to all these ions are found on the self-correlation
line of the 2D mass spectrum (circled). On the horizontal lines
crossing the self-correlation peaks of the MH2

2+ ion of each
peptide, we can see the peaks corresponding to the c/z
fragmentations of these ions. We do not see peaks
corresponding to sugar loss, which is consistent with the fact
that ECD is specific to peptide bond fragmentations and does
not affect post-translational modifications.16 The fact that we
do not see fragmentations that are not caused by ECD also
means that, despite the fact that precursor ions can be excited
to high radii over relatively long time intervals, there are no ion-
gas collisions leading to fragmentations inside the ICR cell.
Figure 4 also shows two other characteristic lines of 2D mass
spectra. The first one is the y = x/2 electron capture line. The
other characteristic line is the loss of a neutral, which is parallel
to the self-correlation line but shifted to the left by the mass of
the neutral. In Figure 4, the MH2

•+ loses CO2, so the line
corresponding to this is y = x/2 + 43.990.

Figure 5 shows a 2D ECD mass spectrum of bovine
pancreatic insulin that features the fragmentation patterns of

MH4
4+ (m/z 1146.928), MH5

5+ (m/z 955.941), and MH6
6+

(m/z 819.522). The self-correlation line is circled. In the
inserts, we zoomed in on the region between m/z 1600 and
1800 horizontally and between m/z 1100 and 1180 vertically
(fragment peaks of m/z 1147, corresponding to MH5

5+). In the
Supporting Information Figures 9 and 10 we show the steps of
data processing. In Supporting Information Figures 9, we show
the 2D mass spectrum after a simple 2D Fourier transform and
a conversion from frequencies into mass-to-charge ratios. Not
only do we notice strong vertical traces of scintillation noise on
the 2D mass spectrum, but we also observe many secondary
self-correlation lines. These secondary lines are caused partially
by the fact that the signal along t1 is not a perfect sinusoid and
shows harmonics after Fourier transformation.17 The harmon-
ics are also offset by the frequency of the highest m/z ratio in
the spectrum or one of its multiples, which causes the nonlinear
aspect of the secondary lines in the 2D mass spectrum. To limit
the effect of the offset, we applied a time-dependent
demodulation of the data along t1 before the vertical Fourier
transform. The result is shown in S.I. Figure 10. We notice that
a number of secondary lines have disappeared from the
spectrum, thereby making it more easily readable. Furthermore,
we can also notice a slight increase in signal-to-noise ratio. The
2D mass spectrum presented in Figure 5 has been submitted to
another step of data processing between the vertical phase
correction and Fourier transform, because it has been denoised
using the Cadzow algorithm.5b We can notice that the vertical
scintillation noise stripes have significantly decreased, making
data interpretation much easier.
In Figure 5 we observe a number of peaks corresponding to

known fragmentations, most notably the addition of one or two
electrons to the peptide, leading to the radical ions that
fragment into c and z ions.18 We compared the fragment peaks

Figure 4. 2D mass spectrum of the mixture of custom synthetic
glycopeptides (M1: YSPTS(β-O-GlcNAc)PSK-NH2,M2: SVES(β-O-
GlcNAc)GSADAK-NH2, M3: SVET(β-O-GlcNAc)GSADAK-NH2 at
1 pmol/μL in MeOH/water, 50:50, with 0.1% formic acid) using ECD
(0.015 s at 1.7 A cathode heater current) as a fragmentation mode.
The number of data points is 2048 × 65536. The spectrum has been
denoised using the Cadzow algorithm (30 lines, 5 iterations, order of
1000). The self-correlation line is circled.

Figure 5. 2D mass spectrum of bovine pancreatic insulin (3 pmol/μL
in MeOH/water, 50:50, with 0.1% formic acid) using ECD (0.01 s at
1.5 A cathode heater current) as a fragmentation mode and with a m/z
300−2000 horizontal mass range and a m/z 800−1500 vertical mass
range. The number of data points is 2048 × 65536. The spectrum has
been denoised using the Cadzow algorithm (30 lines, 5 iterations,
order of 1000). The self-correlation line is circled. The insert shows a
zoom in the region between m/z 1600 and 1800 horizontally and
between m/z 1100 and 1180 vertically (fragment peaks of m/z 1147,
corresponding to MH5

5+).

Analytical Chemistry Article

dx.doi.org/10.1021/ac3004874 | Anal. Chem. 2012, 84, 5589−55955592

     van Agthoven, M. A., Chiron, L., Coutouly, M.-A., 
Delsuc, M.-A. & Rolando, C.!

    Anal Chem 84, 5589–5595 (2012).

Chiron, L., van Agthoven, M. A., Kieffer, B., Rolando, C. & Delsuc, M.-A. !
Proc Natl Acad Sci USA 111, 1385–1390 (2014).
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Practically
• SIZE is a problem 

‣ “small” :  2k x 128k    ⇒   file size is already 2 Gb on disk 

‣ “ideal” : 16k x 512k    ⇒  64 Gb ! 

• to be processed at once 
‣ rely on fast algorithms : FFT 
‣ rely on robust and efficient processing language : python 
‣ rely on sophisticate file management : NASA HDF5 file format 
‣ rely on dedicated display : hierarchical “google-maps-like” display engine 

• be performed “at home” 
‣ able to run on desktop 
!

• Resolution is a goal 
• Goes with size 
‣ Gabor-Heisenberg relation 

• longer t1  ⇒  longer acquisition

T
max

�F = 1
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2D Recital
R1=500!
R2=50.000

Recital
urQRd + FFT

0.02 amu

1amu
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• Inverse approach 
• Split algorithm 

‣ Improve alternatively
experimental data
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recomputed spectrum
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Non Uniform Sampling & RECITAL & 2D
• Substance P

Non NUS 2 k NUS 4 k div 2 NUS 8 k div 4 

NUS 16 k div 8 NUS 32 k div 16 The overall aspect of the 2D 
spectrum is maintained.

With C.Rolando
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Zooming on a off-diagonal peak

NUS 4 k div 2 Non NUS 2 k NUS 8 k div 4 

NUS 16 k div 8 NUS 32 k div 16 
P r e c u r s o r r e s o l u t i o n i s  
increasing with undersampling 
ratio as expected.
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parent precursor profile

NUS 4 k div 2 Non NUS 2 k NUS 8 k div 4 

NUS 16 k div 8 NUS 32 k div 16 

Precursor FWHM is  decreasing proportionally to the undersampling ratio.
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NPK v2  program
• New program 

‣ Extension of a previous NMR processing program 
• multi FT spectroscopies 

FT-ICR     Orbitrap 
NMR       FT-IR soon 

• Implements standard 1D, 2D and even 3D processing 

• Advanced technologies and algorithms 
Uses multi-core / multi-processor architectures through MPI 
Unlimited data-size though HDF5    (we do regularly 130Gb spectra ) 
FFT, Hilbert, Laplace, Recital, MaxEnt, etc... 
real - complex - quatertionic (hypercomplex)  values 

• Programmatic interface 
‣ K is for Kernel ! 
python       ipython as interactive shell      standard graphic output 
configuration files for involved operations (2D, NUS, ...) 

• Open-Source 
• available on bitbucket.org 
• not fully-documented yet ! 
• contact-me !

Recital speed-up 
up to 64 processors



• Prospectom- novembre 2014 •

Un exemple de réseau
• Il faut : 

• des mathématiques 
• de l’algorithmique 
• de l’informatique 
• de la physique 
• de la biologie 
!

• Réseau MesureHD (CNRS - Mastodons) 
• mathématicien 
‣ P.L. Combette   lab JLL 

• algorithmiciens 
‣ JC Pesquet - E Chousezoux    lab GM 

• informaticiens / GPU 
‣ P.Collet   lab iCube 

• physiciens de la mesure 
‣ FT-IR : P.Roy Soleil 
‣ FT-ICR : J.Chamot-Rooke Pasteur  C.Rolando MSAP  
‣ NMR : B.Kieffer  MA Delsuc  ESBS/IGBMC
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Le consortium

P-L Combettes	

LJLL-Paris	


Théorie

J-C Pesquet	

LIGM-Paris	


Algorithmique

P. Collet	

iCube-Strasbourg	


GPGPU

M-A Delsuc	

IGBMC-Strasbourg	


RMN - Développements

J. Chamot-Rooke	

B. Schwikowski	


Pasteur Paris	

MS - protéomique

P. Roy	

Soleil - Paris	


FTIR

B. Kieffer	

IGBMC - Strasbourg	

RMN - Interactions

A. Ourjoumstev	

IGBMC - Strasbourg	

RX – Biol. Structurale

C. Rolando	

MSAP - Lille	


FTICR - Métabonomique

INSMI

INS2I

INC

INSB

INSB
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nombreux projets - en cours
• algorithmiques 

• appliqués à la déconvolution des patterns en MS 
• massifs isotopiques 
• motifs multicharge 
• combinaison des deux 

• développement 
• déployer les algorithmes vers les laboratoires d’analyse 
• plateforme de traitement intégrée dans le data-flow “bioinformatique” 

• Symposium 
• Chemical Complexity & Biology        Strasbourg 19-20 Janvier 2015 

• Renforcer le consortium 
• modélisation des interactions complexes 
• start-up 
‣ outils d’intégration logiciel 

• Recherchons Post-Doc !!! 
• et doctorants
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• fundings 

• ANR 
• grant 2010 FT-ICR-2D 

• CNRS 
• TGIR 

• grant 2013 Mesure-HD 

• NMRTEC S.A.S 

!
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